Robin Thibaut

Computational Geoscientist @ Zanskar Geothermal & Minerals

robin.jpeg
Computational Geoscientist Bayesian Uncertainty Quantification ML/AI

Computational geoscientist specializing in Bayesian uncertainty quantification and ML for geothermal systems. I develop finite-element thermal simulation–calibrated, Python-first workflows that fuse well, geophysical, and hydrologic data for subsurface characterization and quantified uncertainty analysis.

Ask Me Anything ! Portfolio Website Kaggle LinkedIn ORCID


Core Expertise

Programming & ML: Python (NumPy, Pandas, scikit-learn, PyTorch, TensorFlow), Uncertainty Quantification (Bayesian, BEL), Experimental Design, ML/AI, Time-series/Spatial Modeling

Geoscience Modeling: Finite element thermal simulation, MODFLOW, MT3DMS, MODPATH, ModelMuse, CRTOMO, RES2DINV, SGEMS, Geophysical Data Integration (ERT/IP), Hydrologic/Groundwater Modeling

Data & Engineering: SQL, Snowflake, Git, Data Engineering/ETL, Cloud (Google Cloud Platform), Scientific Visualization, Linux/Windows/macOS


Highlighted Publications


Open Source Software & Resources

Software Packages:

Datasets:



GitHub Stats

Robin's GitHub stats
Top Languages


Connect & Collaborate


news

latest posts

selected publications

  1. Efficiency and heat transport processes of low-temperature aquifer thermal energy storage systems: new insights from global sensitivity analyses
    Luka Tas, Niels Hartog, Martin Bloemendal, and 5 more authors
    Geothermal Energy, Jan 2025
    Open access, published 07 January 2025
  2. sim_combined.png
    Comparing Well and Geophysical Data for Temperature Monitoring Within a Bayesian Experimental Design Framework
    \textbfRobin Thibaut, Nicolas Compaire, Nolwenn Lesparre, and 3 more authors
    Water Resources Research, Nov 2022
  3. whpa.png
    A new framework for experimental design using Bayesian Evidential Learning: The case of wellhead protection area
    \textbfRobin Thibaut, Eric Laloy, and Thomas Hermans
    Journal of Hydrology, Dec 2021